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Hodnocení výsledků klasifikace 

Evaluation of Classification Results 
 

Hana Řezanková, Dušan Húsek 

 

Abstrakt: Článek se zaměřuje na míry, které mohou být aplikovány pro hodnocení výsledků 

klasifikace objektů. K hodnocení jsou využity objekty, pro které je známo jejich zařazení do 

určitých skupin. Pomocí klasifikační metody uživatel získá odhady přiřazení objektů do 

skupin. Pro hodnocení úspěšnosti klasifikace již bylo navrženo mnoho koeficientů. Většina 

z nich je určena pro případ klasifikace do dvou skupin. Možnosti pro hodnocení klasifikace do 

více než dvou skupin jsou omezené. Cílem tohoto článku je podat přehled různých měr, 

diskutovat jejich původ a vzájemné vztahy. Pro klasifikace do tří nebo více skupin 

navrhujeme dvě nové míry, které jsou pro hodnocení vhodnější. První z nich bere v úvahu 

variabilitu četností na diagonále konfuzní matice. Druhá je založena na součtu čtvercových 

vzdáleností mezi maximálně možným správným zařazením objektů a reálně správně 

zařazených objektů v každé skupině. 

 

Abstract: The paper focuses on measures which can be applied to evaluation of classification 

results. Objects with known assignment to certain groups are used for evaluation. Using a 

classification method the user obtains the assignment of objects to groups. Many coefficients 

have been proposed for evaluation of the success rate of classification. Most of them is 

determined for classification to two groups. Possibilities for classification to more groups are 

limited. The aim of this paper is to summarize different measures, discuss their origin and 

relationships. For classification to three or more groups we propose two novel measures 

which are more suitable. The first of them takes a variability of diagonal frequencies of the 

confusion matrix into account. The second one is based on the sum of squared differences 

between the maximum correctly assigned objects and real correctly assigned objects in each 

group. 

Klíčová slova: míry podobnosti, míry souhlasu, úspěšnost klasifikace 
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1. Introduction 

If a new method for object classification is developed or a model of object classification 

is estimated, evaluation of classification results is very useful and necessary. Many 

coefficients have been proposed for evaluation of the success rate of classification. Most of 

them is determined for classification to two groups. Possibilities for classification to more 

groups are limited. The aim of this paper is to summarize different measures, discuss their 

origin and relationships. For classification to three and more groups two novel measures, 

which better evaluate obtained results, are proposed. The first of them takes a variability of 

diagonal frequencies of the confusion matrix into account. The second one is based on the 

sum of squared differences between the maximum correctly assigned objects and real 

correctly assigned objects for each group. Measures evaluating classification are based on the 

confusion matrix including the frequencies nij. Each value nij expresses the number of objects 

observed in the i-th group and classified in the j-th group. 
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2. Classification to two groups 

In case of classification to two groups, more approaches are available to the users in 

comparison with classification to more than two groups. The confusion matrix includes four 

frequencies nij, see Table 1, where n is the total number of objects, n1+ = n11 + n12, 

n2+ = n21 + n22, n+1 = n11 + n21, and n+2 = n12 + n22 are the marginal frequencies. 

 

Table 1  Scheme of confusion matrix for two groups 

  Classified  

  Group 1 Group 2  

Observed 
Group 1 n11 n12 n1+ 

Group 2 n21 n22 n2+ 

  n+1 n+2 n 

 

Let us suppose that group 1 expresses a positive situation (a patient is cured, a client 

repaid the installments, a document contains relevant information) and group 2 expresses a 

negative situation. In the process of classification evaluation, the number of objects from 

group 1 which are classified correctly is usually denoted TP (true positive), i.e. n11 = TP. The 

number of objects from group 1 which are not classified correctly is usually denoted FN (false 

negative), i.e. n12 = FN. Similarly, the number of objects from group 2 which are classified 

correctly is usually denoted TN (true negative), i.e. n22 = TN, and the number of objects from 

group 2 which are not classified correctly is usually denoted FP (false positive), i.e. n21 = FP. 

The basic characteristics of classification to two groups are sensitivity (true positive rate 

or recall) and specificity (true negative rate). The former is defined as n11/n1+, the latter is 

expressed as n22/n2+. Further, the precision (positive predictive value) is defined as n11/n+1 and 

the false positive rate is expressed as (1 – specificity), i.e. n21/n2+. The list of characteristics 

based on the frequencies in the confusion matrix and usually used for classification evaluation 

is shown in Table 2. Some terms comes from the area of information retrieval. 

 

Table 2  Definitions of classification characteristics 

Name 1 Name 2 etc. Equation 

true positive rate (TPR) sensitivity, recall n11/n1+  (1) 

true negative rate (TNR) specificity (SPC) n22/n2+ (2) 

positive predictive value (PPV) precision n11/n+1 (3) 

negative predictive value (NPV)  n22/n+2 (4) 

false positive rate (FPR) fall-out n21/n2+ (5) 

false negative rate (FNR) miss rate n12/n1+ (6) 

false discovery rate (FDR)  n21/n+1 (7) 

false omission rate (FOR)  n12/n+2 (8) 

accuracy (ACC)  (n11 + n22)/n (9) 

F1 score  2n11/(n1+ + n+1) (10) 

Matthews correlation coef. (MCC) 
 

2121

21122211





nnnn

nnnn
 (11) 

 

The confusion matrix is a contingency table in which different kinds of frequencies can 

be displayed, e.g. relative frequencies within the total table (pij = nij/n) with the marginal 

relative frequencies , p1+ = p11 + p12, p2+ = p21 + p22, p+1 = p11 + p21, and p+2 = p12 + p22 (see 
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Table 3), the row relative frequencies (see Table 4) or column relative frequencies (see Table 

5) which provide different views on the relationships between observed and suggested 

assignment of objects to groups. 

 

Table 3  Scheme of confusion matrix for two groups with total relative frequencies 

  Classified  

  Group 1 Group 2  

Observed 
Group 1 p11 p12 p1+ 

Group 2 p21 p22 p2+ 

  p+1 p+2 1 

 

Table 4  Scheme of confusion matrix for two groups with row relative frequencies 

  Classified  

  Group 1 Group 2  

Observed 
Group 1 TPR = n11/n1+ FNR = n12/n1+ 1 

Group 2 FPR = n21/n2+ TNR = n22/n2+ 1 

 

Table 5  Scheme of confusion matrix for two groups with column relative frequencies 

  Classified 

  Group 1 Group 2 

Observed 
Group 1 PPV = n11/n+1 FOR = n12/n+2 

Group 2 FDR = n21/n+1 NPV = n22/n+2 

  1 1 

 

The rates, predictive values, accuracy and F1 score have values from the interval [0; 1]. 

The true rates (TPR and TNR), predictive values (PPV and NPV), accuracy and F1 score 

should be close 1, false rates should be close 0. 

The accuracy is known as the simple matching coefficient (SMC) in the area of 

similarity measures for binary variables, applied e.g. in hierarchical cluster analysis. It is the 

weighted arithmetic average of sensitivity and specificity: 

 

n

nn

nn
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
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(12) 

The F1 score is a harmonic mean of sensitivity and precision. It is well known 

similarity measure for two asymmetric dichotomous variables, called Dice or Czekanowski or 

Sorenson. Usually, it is expressed in the form 

 
211211

11

2

2

nnn

n
DICE


 . (13) 

The weighted harmonic mean of sensitivity and precision is the F-measure: 
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http://en.wikipedia.org/wiki/Harmonic_mean
http://en.wikipedia.org/wiki/Precision_and_recall#F-measure
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where  may be varied between 0 and 1. It is the significance level, see (Billinger et al., 

2012). The arithmetic average of sensitivity and precision gives the Kulczynski similarity 

measure 2, i.e. 
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(15) 

The geometric mean of sensitivity and precision gives the Ochiai similarity measure in the 

form 

 
1

11

1

11




n

n

n

n
OCHIAI . (16) 

It is the special equation for the cosine similarity measure determined for quantitative 

variables. 

The average of TPR, TNR, PPV and NPV is called Sokal and Sneath similarity measure 

4, i.e. 

 

4
2

22

2

22

1

11

1

11






n

n

n

n

n

n

n

n

SS4 . 
(17) 

The average of the values from the interval [0; 1] is the value from the same interval. 

The false positive rate and the true positive rate are a basis for a construction of the 

ROC (Receiver Operator Characteristic) curve. The values of the former creates the x axis and 

the values of the letter creates the y axis. For evaluation of classification, the AUC (Area 

Under the receiver operating characteristic Curve) characteristic is used. It is the total measure 

of ability of the model to predict assignment of objects to groups, see (Hosmer and 

Lemeshow, 2000). 

Some suitable measures of association known from the contingency table analysis can 

be used for evaluation of classification. Further, some similarity measures for binary variables 

used in hierarchical cluster analysis can be also applied. 

The Matthews correlation coefficient (Mathews, 1975), see Table 2, Eq. (11), is the 

classical Pearson correlation coefficient expressed for two binary variables by frequencies 

from the contingency tables. In a case of two binary variables, the equation for the Pearson 

correlation coefficient is the same as the formulas for the Spearman and Kendall rank 

correlation coefficients (Kendall’s tau-b). That means there is only one correlation coefficient 

for measurement of association of two dichotomous variable which can be used for 

classification evaluation. This coefficient has values from the interval [–1; 1]. Three examples 

of frequencies which give values 1, 0 and –1 are shown in Tables 6–8. The absolute values of 

the correlation coefficient are the same as the values of the phi coefficient of association based 

on the Pearson chi-squared statistic.  

 

Table 6  Example of frequencies which give the value 1 of the correlation coefficient 

  Classified  

  Group 1 Group 2  

Observed 
Group 1 90 0 90 

Group 2 0 90 90 

  90 90 180 
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Table 7  Example of frequencies which give the value 0 of the correlation coefficient 

  Classified  

  Group 1 Group 2  

Observed 
Group 1 45 45 90 

Group 2 45 45 90 

  90 90 180 

 

 

Table 8  Example of frequencies which give the value –1 of the correlation coefficient 

  Classified  

  Group 1 Group 2  

Observed 
Group 1 0 90 90 

Group 2 90 0 90 

  90 90 180 

 

The correlation coefficient is a measure of linear dependence. There are two other 

coefficients proposed for linear dependence measurement of two ordinal variables which can 

be applied to binary variables – symmetric Somers’s d and Goodman and Kruskal’s gamma. 

Somers’s d is a harmonic mean of two asymmetric coefficients. For the 2 × 2 contingency 

table it is defined as 
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d . (18) 

Its values are very close to values of the correlation coefficient, because generally Kendall’s 

tau-b can be expressed as a geometric mean of two asymmetric Somers’s coefficients. For 

classification we can consider a directional measure, it means if classification (C) with 

frequencies placed in columns of the confusion matrix is dependent on observed assignment 

of objects to groups placed in rows (R) or not. In this case 
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
 . (19) 

If the confusion matrix is symmetric, then the values of all three Somers’s coefficients are the 

same. 

Goodman and Kruskal’s gamma is called as Yule’s Q for the 2 × 2 contingency table. It 

is defined by the equation 
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
 . (20) 

This coefficient has also values from the interval [–1; 1]. Values 1, 0 and –1 correspond with 

situations in which correlation coefficient has the same values, see Tables 6–8. Yule’s Q is 

used as a similarity measure in multivariate statistical methods. 

Another coefficient with similar properties is Yule’s coefficient of colligation. It can be 

expressed by the formula 

 

21122211

21122211

nnnn

nnnn
Y




 . (21) 

Yule’s coefficients assess the association between items as the predictability of one given the 

other.  
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The example in Table 6 is an ideal situation and the best classification. Beside of the 

measures mentioned above there are some different measure with this property, e.g. measures 

of agreement. One of them is Kohen’s kappa which can be used for any square contingency 

table (two variables have the same number of categories which correspond with their senses). 

For the 2 × 2 table it is calculated according to the formula 
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This coefficient has values from the interval [–1; 1]. The value 0 means that the frequencies in 

the table are the same as the frequencies expected under the hypothesis of independence. The 

value –1 can be achieve only for the symmetric confusion matrix. 

If all non-zero values are in the diagonal (see Table 6) then n11 + n22 = n and  = 1. If 

frequencies in the contingency table correspond to independence (see Table 7), then  = 0. If 

the value in the diagonal are zero (see Table 8), then n12 = n1+ = n+2 and n21 = n2+ = n+1, i.e. 
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If n12 = n21 then  = –1.  

The special measure of agreement proposed for the 2 × 2 table is Hamann’s coefficient 

(HC) defined by the equation 

 
n

nnnn
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This coefficient has values from the interval [–1; 1]. It is applied as a similarity measure in 

multivariate methods. The examples of frequencies which give the values 1, 0 and –1 are in 

Tables 6–8. 

Beside of the simple matching coefficient with a range from 0 to 1, some other 

similarity measures with this range can be applied. We can mention Sokal and Sneath 

similarity measure 5 calculated as 
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Some similarity measures favor the correct classification. The example are the Sokal 

and Sneath similarity measure 1 
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and the Rogers and Tanimoto similarity measure 
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
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These coefficients have also values from the interval [0; 1]. 

There are also similarity measures which have not values either from the interval [0; 1] 

nor [–1; 1]. These measures have a minimum value of 0 and have no upper limit. We will not 

evaluate them in this study. 

Moreover, there are several coefficients which represent only the proportion of correct 

classification to the first group as the F1 score (or the Dice similarity measure) or the K2 or 
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Ochiai similarity measures express. They have values from the interval [0; 1]. There are 

Russel and Rao (RR), Jaccard (JACC), and Sokal and Sneath (SS2) similarity measures. The 

Russel and Rao similarity measure is defined as 

 
n

n
RR 11 , (28) 

the Jaccard coefficient as 
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and the Sokal and Sneath similarity measure 2 as 
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In Table 9, there are examples of frequencies and corresponding values of coefficients. 

Different frequencies for all marginal frequencies equal 90 are considered (as in Tables 6–8). 

It means that the confusion matrix is symmetric. For the reason that given marginal 

frequencies and the frequencies in one cell determine frequencies in three other cells, only the 

value of n11 is included in the table. The coefficients are ordered according their values (from 

higher to lower values in the group of a certain coefficient type). We can see that for the 

symmetric confusion matrix some coefficients give the same results. Graphical representation 

of coefficient values is shown in Figures 1 and 2. 

 

 

Figure 1  Dependence of coefficient values on selected frequencies in the first cell of the 

confusion matrix with marginal frequencies 90, 90, 90 90 (coefficients with range from 0) 
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Figure 2  Dependence of coefficient values on selected frequencies in the first cell of the 

confusion matrix with marginal frequencies 90, 90, 90 90 (coefficients with range [–1; 1]) 

 

Table 9  Examples of frequencies and corresponding values of coefficients 

 Frequencies – examples 

 1 2 3 4 5 6 7 8 9 

n11 0 10 20 30 45 60 70 80 90 

 Values of coefficients 

Measures for symmetric binary variables with range [0; 1] 

SS1 0 0.20 0.36 0.50 0.67 0.80 0.88 0.94 1 

SS4 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1 

ACC 

(SMC) 
0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1 

RT 0 0.06 0.13 0.20 0.33 0.50 0.64 0.80 1 

SS5 0 0.01 0.05 0.11 0.25 0.44 0.60 0.79 1 

Measures for asymmetric binary variables 

F1 score 

(Dice) 
0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1 

F-0.7 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1 

K2 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1 

Ochiai 0 0.11 0.22 0.33 0.50 0.67 0.78 0.89 1 

JACC 0 0.06 0.13 0.20 0.33 0.50 0.64 0.80 1 

SS2 0 0.03 0.07 0.11 0.20 0.33 0.47 0.67 1 

RR 0 0.06 0.11 0.17 0.25 0.33 0.39 0.44 0.5 

Measure with range [–1; 1] 

Q –1 –0.97 –0.85 –0.60 0 0.60 0.85 0.97 1 

Y –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1 

MCC (r) –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1 

Som. d –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1 

HC –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1 

kappa –1 –0.78 –0.56 –0.33 0 0.33 0.56 0.78 1 
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Figure 3  Dependence of coefficient values on selected frequencies in the first cell of the 

confusion matrix with marginal frequencies 90, 90, 60, 120 (coefficients with range [0; 1]) 

 

 

Figure 4  Dependence of coefficient values on selected frequencies in the first cell of the 

confusion matrix with marginal frequencies 90, 90, 60 120 (coefficients with range [–1; 1]) 

3. Classification to three and more groups 

If we consider more than two groups, then the number of possibilities for evaluation of 

classification is considerably less. We can evaluate classification to individual groups 

separately (assignment to a certain groups and to all other groups) and use the approaches 

mentioned above. However, for evaluation of assignment to all groups simultaneously only 

the simple matching coefficient and the kappa coefficient are usually applied. The simple 

matching coefficient is defined as 
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where K is the number of groups. This coefficient has values from the interval [0; 1]. The 

SMC measure is a weighted arithmetic average of individual sensitivities for each group: 
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This coefficient does not distinguish variability of diagonal frequencies. 

For K groups the kappa coefficient is expressed as 
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It has values from the interval [–1; 1]. If the frequencies in the confusion matrix are the same 

as the frequencies expected under the hypothesis of independence, then the value of kappa is 

0. However, if the value is 0, then random frequencies are only one from several possibilities. 

For this reason, the kappa coefficient is the suitable measure of agreement, but it is not a 

suitable measure for evaluation of classification results. 

The modified Hamann’s coefficient for K groups can be applied for evaluation of 

classification results in the form 
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This coefficient has values from the interval [–1; 1]. The value 0 means that the number 

of correct assigned objects and the number of incorrect assigned objects are the same. 

However, we obtain similar information as using the SMC measure, only in the different 

interval. The comparison of three mentioned coefficients applied for the symmetric confusion 

matrix for 90 objects is shown in Figure 5. 

 

 

Figure 5  Dependence of coefficient values on selected diagonal frequencies 
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For the reason that the coefficients mentioned above do not express a success rate of 

classification in a suitable way, we propose a new coefficient including variability of 

frequencies. Sensitivities are relative frequencies. However, the sum of them usually is not 1. 

If these relative frequencies are recalculated for the sum equal 1, then we can express 

variability of corrected classification. 

We suggest to apply nominal variance (i.e. mutability) proposed by Gini (1912) as a 

variability measure. So each sensitivity is divided by the sum of sensitivities and then the 

normalized nominal variance of these proportions are calculated. The SMC coefficient is 

multiplied by the obtained value, i.e. 
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If all proportions are the same, then the normalized nominal variance is 1 and RH = SMC. If 

only one class is classified correctly, then variance is 0 and RH = 0. 

If there are the same numbers of objects in all groups, then variability of diagonal 

frequencies instead variability of sensitivities can be calculated. Then the RH coefficient can 

be expressed as 
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We can illustrate taking variability into account with the following example. Let us 

suppose that there are 3 groups and 9 objects. In each group there are 3 objects correctly. The 

values of the SMC and RH coefficients are in Table 10. 

Another way to take into account different sensitivities in individual groups is to 

compute the sum of squared differences between the maximum correctly assigned objects and 

real correctly assigned objects for each group: 
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For obtaining values from the interval from 0 to 1, the Dif2Norm measure can be expressed in 

the form 
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The values of Dif2 and Dif2Norm for the example mentioned above are in Table 10. In 

this table the rows are ordered according to values of the RH and Dif2Norm measures. We can 

see that both measures give the same order for the given marginal frequencies. Both measures 

give for two cases of frequencies the same values but the pairs of frequencies are different. 
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Table 10  Examples of diagonal frequencies and values of SMC, RH and Dif2Norm 

measures 

Diagonal 

frequencies 
SMC 

Normalized 

mutability 
RH Dif2 Dif2Norm 

0,0,0, 0 0 0 27 0 

1,0,0 0.111 0 0 23 0.148 

2,0,0 0.222 0 0 19 0.296 

3,0,0, 0.333 0 0 18 0.333 

1,1,0 0.222 0.750 0.167 17 0.370 

2,1,0 0.333 0.667 0.222 14 0.481 

3,1,0 0.444 0.563 0.250 13 0.519 

1,1,1 0.333 1.000 0.333 12 0.556 

2,2,0 0.444 0.750 0.333 11 0.593 

3,2,0 0.556 0.720 0.400 10 0.630 

2,1,1 0.444 0.938 0.417 9 0.667 

3,3,0 0.667 0.750 0.500 9 0.667 

2,2,1 0.556 0.960 0.533 6 0.778 

3,2,1 0.667 0.917 0.611 5 0.815 

2,2,2 0.667 1.000 0.667 3 0.889 

3,2,2 0.778 0.980 0.762 2 0.926 

3,3,2 0.889 0.984 0.875 1 0.963 

3,3,3 1 1.000 1 0 1 

 

 

According to our opinion the RH and Dif2Norm measures are more suitable for 

evaluation of classification results than usually used measures because the successful 

classification to all groups is preferred over the total number of correctly classified objects. 

 

4. Conclusion 

Many different measures have been proposed for evaluation of classification results. For 

classification to two groups, the possibilities are varied. If the numbers of objects observed in 

two groups are the same and the numbers of objects predicted to two groups are also the 

same, then the obtained values of some coefficients are the same. In this paper we point out 

which coefficients have the same dependence on the frequencies in the confusion matrix. 

For evaluation of assignment to three or more groups simultaneously, only the simple 

matching coefficient and the kappa coefficient are usually applied. If the value of the kappa 

coefficient is zero, it can mean that the frequencies in the confusion matrix are the same as the 

frequencies expected under the hypothesis of independence, however it is only one from 

many possibilities. The simple matching coefficient, which is a weighted arithmetic average 

of individual sensitivities for each group, does not distinguish variability of diagonal 

frequencies. 

For this reason we proposed two novel coefficients, the HR and Dif2Norm coefficients. 

The former takes a variability of diagonal frequencies into account. The normalized nominal 

variance is used as a variability measure in this case. The HR coefficient is a product of the 

simple matching coefficient and the normalized nominal variance. The Dif2Norm coefficient 

is based on the sum of squared differences between the maximum correctly assigned objects 
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and real correctly assigned objects for each group. The obtained value is normalized to the 

interval [0; 1]. We believe that the proposed coefficients evaluate the results of classification 

suitably. 
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